LESSON - 9 # HYDROCARBON हाइडोकार्बन #### Some Key Points Hydrocarbon A compound of carbon and hydrogen is known as hydrocarbon. Saturated Hydrocarbon A hydrocarbon is said to be saturated if it contains only C–C single bonds. For example: METHANE Usaturated Hydrocarbon Hydrocarbon with double and triple bonds Example; Ethene, butene ethyne, propyne CH2=CH2, CH=CH Aromatic Hydrocarbon Benzene and its derivatives are called aromatic compounds. Example: Benzene, Toluene Alicyclic Compounds Cyclic compounds which consist only of carbon atoms are called alicyclic or carbocyclic compounds. · Heterocyclic Compounds Cyclic compounds in which the ring atoms are of carbon and some other element (For example, N, S, or O) are called heterocyclic compounds. Alkanes Alkanes are the simplest organic compounds made of carbon and hydrogen only. They have the general formula C_nH_{2n+2} (where $n=1,\ 2,\ 3,\ etc.$) | Number
of
C atoms | Formula | Name | |-------------------------|---------------------------------|---------| | 1. | CH ₄ | methane | | 2. | C_2H_6 | ethane | | 3. | C ₃ H ₈ | propane | | 4. | C ₄ H ₁₀ | butane | | 5. | C ₅ H ₁₂ | pentane | | 6. | C ₆ H ₁₄ | hexane | | 7. | C ₇ H ₁₆ | heptane | | 8. | C ₈ H ₁₈ | octane | | 9. | C ₉ H ₂₀ | nonane | | 10. | C ₁₀ H ₂₂ | decane | ALKENE; General formula is C_NH_{2N} , Where, N = 1,2,3... Alkynes Alkynes are characterised by the presence of a triple bond in the molecule. Their general formula is CnH2n-2. Structure of Benzene: Molecular formula of benzene is C_6H_6 . This indicates that benzene is a highly unsaturated compound. In 1865, Kekule gave the cyclic planar structure of benzene with six carbons with alternate double and single bonds. Failure of Kekule's structure: Kekule structure of benzene failed to explain the unique stability and its preference to substitution reaction than addition reactions. Orbital structure of benzene: All six carbon atoms in benzene are ${\rm sp}^2$ hybridized. The ${\rm sp}^2$ hybrid orbitals overlap with each other and with s orbitals of the six hydrogen atoms forming C–C and C–H σ -bonds. #### Conditions for Aromaticity: - (i) An aromatic compound is cyclic and planar. - (ii) Each atom in an aromatic ring has a p orbital. These p orbitals must be parallel so that a continuous overlap is possible around the ring. - (iii) The cyclic π molecular orbital (electron cloud) formed by overlap of p orbitals must contain (4n + 2) π electrons. Where n = integer (0, 1, 2, 3, etc.). This is known as Huckel rule. Preparation of Benzene: Benzene is commercially isolated from coal tar. However, there are some synthetic methods which are applied in the laboratory for the preparation of benzene. $$\begin{array}{c} C_6H_5COONa \ + \ NaOH \ + C_aCO_3 \ \rightarrow \ C_6H_6 \\ \\ C_6H_5OH \ + Zn \xrightarrow{heat} \ C_6 \ H_6 \\ \\ 3CH \equiv CH \xrightarrow{red \ hot \ Iron \ tube} \ C_6H_6 \end{array}$$ - Hydrocarbons: They are compounds of carbon and hydrogen only. Open Chain saturated compound-Alkane Unsaturated Compound-Alkenes and Alkynes Aromatic Compound-Benzene and its derivatives Terminal alkynes are weakly acidic in nature. - Conformation: Spatial arrangements obtained by rotation around carbon-carbon sigma bonds. - Eclipsed Conformation: Less stable because of more repulsion between bond pairs of elec- - Staggered: It is more stable since there is less repulsion between bond pairs of electrons. - Geometrical isomerism: Observed only in compounds containing a double bond. - Stability of benzene. Is explained on the basis of resonance hybrid. - Arenes: Take part in electrophilic substitution reaction. Aromaticity is determined by Huckle's rule $(4n+2)\pi$ electron rule CH₄ + Cl₂ + energy $$\rightarrow$$ CH₃Cl + CH₂Cl₂ + CHCl₃ + CCl₄ + HCl CH₄ + 2O₂ \rightarrow CO₂(g) + 2H₂O + 212.9 kcal $$\begin{array}{l} C_3H_8(g) \ + \ 5O_2(g) \ \rightarrow 3CO_2(g) \ + \ 4H_2O(g) \ + \ 488.8 \ \text{kcal} \\ \text{kcal} \ 2C_8H_{18}(g) \ + \ 25O_2(g) \ \rightarrow 16CO_2(g) \ + \ 18H_2O(g) \\ \qquad \qquad + \ 2448 \ \text{kcal} \end{array}$$ #### **Key Points** #### Important Chemical Reaction 1. Wurtz Reaction $$2R-X + 2 Na \xrightarrow{Dry Ether} R-R + 2NaBr$$ 2. Decarboxylation $$R$$ -COONa + NaOH $\stackrel{\text{CaO}}{\triangle}$ R -H + Na₂CO₃ 3. Kolbes Electrolytic Method $$2R - COONa + H_2O \xrightarrow{Electrolysis} R-R + 2CO_2 + H_2 + 2NaOH$$ * Markovnikov Rule: The rule states that -ve part of the addendum molecule gets attached to that carbon atom which possesses a lesser number of Hydrogen atom 4. $$CH_3 - CH = CH_2 + Hx \longrightarrow CH_3 - \frac{CH}{1} - CH_3$$; x=Cl, Br, 1 5. Kharash Effect: (Peroxide effect) $$CH_3 - CH = CH_2 + HBr \xrightarrow{(C_6H_5CO)_2O_2} CH_3 - CH_2 - CH_2$$ Only H Br under goes peroxide effect 6. Ozonovisic: Reaction of Alkene with ozone (O₃), followed by hydrolysis is the presence of Zn & Water $$R - CH = CH - R + O_3 \xrightarrow{Zn/H_2O} R - CHO + R - CHO$$ $$R - C = C - R + O_3 \xrightarrow{Zn/H_2O} R - CO - R + R - CO - R$$ 7. Friedel Crafts Alkylation Reaction a. $$\bigcirc$$ + CH₃Cl $\xrightarrow{\text{anh. AlCl}_3}$ + HCl b. Acylation reaction $$\bigcirc + \text{CH}_3\text{COCl} \xrightarrow{\text{anh. Alcl}_3} \bigcirc + \text{HCl}$$ 8. $$3CH \equiv CH \xrightarrow{\text{Red hot Fe tube}} \bigcirc$$ 9. Saytzeff's Rule: If there is chance of formation of two or more alkene, then that alkene is formed which is highly substituted at (C=C) carbon-carbon double bond $$CH_3 - CH - CH_2 - CH_3 \xrightarrow{alc \ KoH} \xrightarrow{\triangle}$$ $$Cl$$ $$CH_3 - CH = CH - CH_3 + KCl + H_2O$$ #### हाइडोकार्बन - हाइड्रोकार्बन कार्बन तथा हाइड्रोजन के यौगिक को हाइड्रोकार्बन कहते - संतृप्त हाइड्रोकार्बन एकँ हाङ्ड्रोकार्बन को संतृप्त कहा जाता है यदि इसमें केवल C-C एकल बंधन होते हैं। उदाहरण के लिए: मीथेन - असंतुप्त हाइड्रोकार्बन दिवधं आबन्धंऔर त्रिआबन्धकार्बन -कार्बनके साथ हाइडोकार्बन हो उदाहरण; एथीन, ब्यूटेन एथाइन, प्रोपाइन CH₂=CH₂, - एरोमैटिक हाइड्रोकार्बन बेंजीन और उसके डेरिवेटिव को एरोमैटिक यौगिक कहा जाता है। - एलिसाइक्लिक यौगिक चक्रीय यौगिक जिनमें केवल कार्बन परमाणु होते हैं, एलिसाइक्लिक या कार्बोइक्लिक यौगिक कहलाते हैं। - विषमचक्रीय यौगिक चक्रीय यौगिक जिनमें वलय परमाण् कार्बन और किसी अन्य तत्व (उदाहरण के लिए, N, S, या O) के होते हैं, विषमचक्रीय यौगिक कहलाते हैं। अल्केन्स अल्केन्स सबसे सरल कार्बनिक यौगिक हैं जो केवल कार्बन और हाइड्रोजन से बने होते हैं। इनका सामान्य सूत्र CnHC2n+2 (where n = 1, 2, 3, etc.) • ऐल्कीन: सामान्य सूत्र C_nH_{2n} , जहां, $n=1,\ 2,\ 3$... बेंजीन की संरचना: बेंजीन का आणविक सूत्र C6H6. इससे पता चलता है िक बेंजीन एक अत्यधिक असंतृप्त यौगिक है। 1865 में, केकुले ने वैकल्पिक दोहरे और एकल बांड वाले छह कार्बन के साथ बेंजीन की चक्रीय समतलीय संरचना दी। केकुले की संरचना की विफलता: बेंजीन की केकुले संरचना अद्वितीय स्थिरता और अतिरिक्त प्रतिक्रियाओं की तुलना में प्रतिस्थापन प्रतिक्रिया की प्राथमिकता को समझाने में विफल रही। #### ये दो संरचनाएँ. बेंजीन की कक्षीय संरचना: बेंजीन में सभी छह कार्बन परमाणु sp^2 हैं संकरित। sp^2 हाइब्रिड (मिश्रित)कक्षीयएक दूसरे के साथ ओवरलैप(अधिसंरेणन) होते हैं और छह हाइड्रोजन परमाणुओं के (s) कक्षीय के साथ C-C और C-H σ -बॉन्ड बनाते हैं। स्गंधितता(गंधयता) के लिए शर्तें: - (i) एक सुगंधित(गंधयुक्त) यौगिक चक्रीय और समतलीय होता है। - (ii) सुगंधित रिंग में प्रत्येक परमाणु में p ऑर्बिटल होता है। ये p कक्षीय समानांतर होने चाहिए ताकि रिंग के चारों ओर एक निरंतर ओवरलैप संभव हो सके। वलय में इलेक्ट्रॉन का सम्पूर्ण विस्थानिकरण - (iii) p कक्षीय के ओवरलैप से बनने वाले चक्रीय π आणिवक ऑर्बिटल (इलेक्ट्रॉन क्लाउड) में (4n + 2) π इलेक्ट्रॉन होने चाहिए। जहाँ n = पूर्णांक (0, 1, 2, 3, आदि)। इसे हकल नियम के नाम से जाना जाता है। वलय में (4n+2) π इलेक्ट्रॉन; n=0,1,2,... बंजीन की विरचन: बंजीन को व्यावसायिक रूप से कोयला टार से अलग किया जाता है। हालाँकि, कुछ संश्लेषित(synthetic) विधियाँ हैं जिनका उपयोग बंजीन तैयार करने के लिए प्रयोगशाला में किया जाता है। $C_6H_5COONa + NaOH + C_aCO_3 \rightarrow C_6H_6$ C₆H₅OH + Zn ऊष्मा → C₆H₆ 3CH \equiv CH + लाल गर्म लौह ट्युब → C_6H_6 - हाइड्रोकार्बन: ये केवल कार्बन और हाइड्रोजन के यौगिक हैं। खुली शृंखला संतृप्त यौगिक-अल्केन असंतृप्त यौगिक-एल्कीन और एल्काइन सुगंधित यौगिक-बेंजीन और इसके व्युत्पन्न टर्मिनल एल्काइन प्रकृति में कमजोर अम्लीय होते हैं। - संरूपण: c-c एकल आबंध के चारो और मुक्त घूर्णन होता है। - ग्रस्त प्रक्षेप: इलेक्ट्रॉनों के बंधन जोड़े के बीच अधिक प्रतिकर्षण के कारण कम स्थिर। - संत्रित प्रक्षेप: यह अधिक स्थिर है क्योंकि इलेक्ट्रॉनों के बंधन जोड़े के बीच कम प्रतिकर्षण होता है। - ज्यामितीय समावयवता: केवल दोहरे बंधन वाले यौगिकों में देखा जाता है। - बेंजीन की स्थिरता: अनुनाद संकर के आधार पर समझाया गया है। - **एरिन्स**: इलेक्ट्रोफिलिक प्रतिस्थापन प्रतिक्रिया में भाग लेते हैं। एरोमैटिकता हकल के नियम $(4n+2)\pi$ नियम द्वारा निर्धारित की जाती है। जहाँ n=0,1,2,... $CH_4(g)$ + 2O2(g)CO2(g) + 2H2O(g) + 212.9 kcal $C_3H_8(g)$ + 5O2(g) \rightarrow 3CO2(g) + 4H2O(g) + 488.8 kcal $2C_8H_{18}(g)$ + 25O2(g) \rightarrow 16CO2(g) + 18H2O(g) + 2448 kcal #### **Key Points** Important Chemical Reaction - Wurtz Reaction 2R-X + 2 Na Dry Ether R-R + 2NaBr - Decarboxylation R-COONa + NaOH CaO / A R-H + Na₂CO₃ - 3. Kolbes Electrolytic Method $2R COONa + H_2O \xrightarrow{Electrolysis} R R + 2CO_2 + H_2 + 2NaOH$ - * योज्य का अधिक ऋणात्मक भाग उस कार्बन पर संयुक्त होता है जिस पर हाइड्रोजन परमाणुओं की संख्या कम हो। - 4. $CH_3 CH = CH_2 + HX \longrightarrow CH_3 \frac{CH}{1} CH_3$; x=Cl, Br, 1 - 5. Kharash Effect: (Peroxide effect) $$CH_3 - CH = CH_2 + HBr \xrightarrow{(C_6H_5CO)_2O_2} CH_3 - CH_2 - CH_2$$ Only H Br under goes perovide effect Only H Br under goes peroxide effect 6. ओजोनोलिसिस: कार्बोनिल यौगिक देने के लिए जिंक और पानी की उपस्थिति में हाइड्रोलिसिस के बाद ओजोन (O₃) के साथ एल्कीन की अभिक्रिया को ओजोनोलिसिस कहा जाता है $$CH_2=CH_2 + O3 +Zn + H_2O \rightarrow 2HCHO$$ $$R - CH = CH - R + O_3 \xrightarrow{Zn/H_2O} R - CHO + R - CHO$$ $$R - C = C - R + O_3 \xrightarrow{Zn/H_2O} R - CO - R + R - CO - R$$ 7. Friedel Crafts Alkylation Reaction a. $$\bigcirc + \text{CH}_3\text{Cl} \xrightarrow{\text{anh. AlCl}_3} + \text{HCl}$$ b. Acylation reaction 8. $$3CH \equiv CH \xrightarrow{\text{Red hot Fe tube}}$$ 9. सैत्ज़ेफ़ नियम- यदि उन्मूलन अभिक्रिया या निर्जलीकरण प्रतिक्रिया के दौरान दो या दो से अधिक एल्कीन बनने की संभावना हो तो वह एल्कीन बनता है जो कार्बन-कार्बन (c=c) दोहरे बंधन पर अत्यधिक प्रतिस्थापित होता है। $$CH_3 - CH_1 - CH_2 - CH_3 \xrightarrow{alc \ KoH} \triangle$$ $CH_3 - CH = CH - CH_3 + KC1 + H_2O$ # MULTIPLE CHOICE QUESTIONS बह् विकल्पीय प्रश्न: - 1. Total number of secondary carbon atom in CH₃CH₂CH(CH₃)CH₂CH₃ is - a) One - b) two - c) three - d) four $CH_3CH_2CH(CH_3)CH_2CH_3$ में द्वितीयक कार्बन की क्ल संख्या है - a) एक - b) दो - c) तीन - d) चार - 2. Structure of 2-Methylpentane is - a) CH₃CH(CH₃)CH₂CH₂CH₃ - b) CH₃CH(CH₃)CH(CH₃)CH₃ - c) CH₃CH₂CH₃ - d) CH₃CH₂CH₂CH₂CH₃ #### 2-मेथिलपेंटेन की संरचना है a) CH₃CH(CH₃)CH₂CH₂CH₃ - b) CH₃CH(CH₃)CH(CH₃)CH₃ - c) CH₃CH₂CH₃ - d) CH₃CH₂CH₂CH₂CH₃ - 3. Number of isomers possible for C_7H_{16} is - a) Ter - b) Nine - c) Five - d) Fourteen # C7H16 के लिए संभावित समावयवता की संख्या है - a) दस - b) नौ - c) पाँच - d) चौदह - 4. $CH_3CH=CH_2 + H_2 \xrightarrow{NI} A$, A is - a) butane - b) propyne - c) propane - d) pentane - CH₃CH=CH₂ +H₂ \longrightarrow A, A $\stackrel{\text{Ni}}{\epsilon}$ - a) ब्यूटेन - b) प्रोपीने - c) प्रोपेन - d) पेंटेन - 5. CH_3 -Cl+ H_2 +Zn+HCl \longrightarrow X, X is - a) Ethane - b) Methane - c) Cloroethane - d) None - CH₃-Cl+H₂ +Zn+HCl → X, X ह - a) एथेन - b) मेथेन - c) क्लोरोएथेन - d) कोई नहीं - 6. Wurtz reaction is used for the preparation of - a) Alkane - b) Alkene - c) Haloalkane - d) None ### वुर्ट्ज़ अभिक्रिया का उपयोग किसके विरचन के लिए किया जाता है - a) ऐल्केन - b) एल्कीन - c) हेलोऐल्केन - d) कोई नहीं - 7. $CH_3CH(CI)CH_3 + Na \xrightarrow{dry ether} Y$, Y is - a) CH₃CH(CH₃)CH(CH₃)CH₃ - b) CH₃ CHCH₃CH₂CH₂CH₃ - c) CH₃CH 2CH₃ - d) CH₃CH₂CH₂CHCH₃CH₂CH₃ # CH₃CH(CI)CH₃ + Na — शुष्क ईथर → Y, Y है - a) CH₃CH(CH₃)CH(CH₃)CH₃ - b) CH₃ CHCH₃CH₂CH₂CH₃ - c) CH₃CH 2CH₃ - d) CH₃ÇH₂CH₂CHCH₃CH₂CH₃ - Sodium salts of carboxylic acid needed for the preparation of propane by Kolbe,s electrolysis method is - a) CH₃CH₂COONa - b) CH₃COONa - c) HCOONa - d) None of these